MCL BOOTCAMP

ANATOMY OF A PCB & PCB MATERIALS

ANATOMY OF A PCB

- Base thin board of insulating material, rigid or flexible, which supports all conductors and components
 - Provides mechanical support to all copper areas and all components attached to the copper
- Conductors normally of high purity copper in the form of thin strips of appropriate shapes firmly attached to the base material
 - Provides the electronical connections between components and solderable attachment points

WHAT IT TAKES TO MAKE A PCB

- Laminate a flat, rigid product made by bonding two or more layers of material
 - Obtained by pressing layers of a filler (reinforcement) material impregnated with resin under heat and pressure
 - The epoxy glass in the middle serves as an insulating material and provides the structural strength for mounting components
- Prepreg a sheet of woven glass reinforcement impregnated with a resin that is not fully cured yet
- Metal foil usually copper is used
 - The copper foil on the outside is the conductive medium through which electrical currents travel

WHAT IT TAKES TO MAKE A PCB

RESINS

- How is a resin selected?
 - Electrical, mechanical, chemical, and thermal characteristics are taken into account
 - All have varying degrees of importance depending on the specific application of the PCB
- Epoxy resins are the most commonly used and sometimes modified with additives to achieve higher thermal properties or improved chemical resistance
- Polyamide is the material of choice when extreme thermal conditions exist, such as extended time at high temperatures during assembly or use

METAL FOIL

- The conductive layer on a laminate can be made of:
 - Copper
 - Nickel
 - Stainless steel
 - Beryllium copper
- Copper is most widely used due to availability, cost, and functionality
- Copper cladding can be on one side of the board or both, depending on the need and use

COPPER FOIL

- The quality of the PCB depends to a large extent, on the properties of the copper foil
- Available in two forms:
 - Rolled annealed copper foil
 - Electrolytic copper foil

LAMINATES

- IPC-4101 Specification for Base Materials for Rigid and Multilayer Printed Boards
 - Current laminate specification
 - Defines the electrical, mechanical, chemical, and environmental requirements that the various combinations of reinforcement and resin (laminate) must meet

LAMINATES....ALSO KNOWN AS DIELECTRIC OR SUBSTRATES

- Varying cloth weaves, cloth thickness, and resin percentage are used to achieve the desired final thickness and dielectric characteristics
- The cloth or fiber material, type of resin, and the cloth to resin ration determine the laminate's type designation
- Important characteristics:
 - Level to which the laminate is fire retardant
 - Dielectric constant
 - The loss factor signals, structure
 - Tensile strength the resistance of a material to breaking under tension
 - Shear strength the strength of a material against the type of structural failure where the material fails
 - Glass transition temperature (Tg) the temperature region where the polymer transitions from a hard, glassy material to a soft, rubbery material
 - Z-axis expansion coefficient the z-axis is the through-plane direction; as the temperature increases, expansion in the Z direction should be a low as possible

PRE-PREG MATERIALS

most common

- FR-2 phenolic cotton paper
- FR-3 cotton paper and epoxy
- FR-4 woven glass and epoxy
- FR-5 woven glass and epoxy
- FR-6 matte glass and polyester
- G-10 woven glass and epoxy
- CEM-I woven glass and epoxy
- CEM-2 cotton paper and epoxy
- CEM-3 non-woven glass and epoxy
- CEM-4 woven glass and epoxy
- CEM-5 woven glass and polyester

PCB Prepreg

The outer layer material consists of sheets of fiber glass, pre-impregnated with epoxy resin. The shorthand for this is called **prepreg**.

KEY SUBSTRATE PARAMETERS

- Woven reinforcements are cheaper, but the high dielectric constant of glass may not be favorable for many higher-frequency applications
- Non-woven reinforcements, or materials with low or no reinforcement, are more expensive but more suitable for some RF/analog applications
- Key parameters:
 - Thermomechanical (glass transition temperature, tensile strength, shear strength, thermal expansion)
 - Electrical (dielectric constant, loss tangent, dielectric breakdown voltage, leakage current, tracking resistance,...)
 - Moisture absorption

FR-4 (CONTINUED)

- Well-proven, properties well understood by manufacturers
- Very common, workhorse of the industry
- Several grades with somewhat different properties are available
- Typically rated to 130° C
- Thin FR-4 can be used in bendable circuit boards

TEFLON

- Teflon is reinforced with glass fiber to get a laminate of low dielectric constant
- Used in RF (radio frequency) applications with small leadless components
- Due to high coefficient of thermal expansion, Teflon laminates have limited use

ALUMINUM OR METAL CORE BOARDS

- Used for parts requiring significant cooling power switches, LEDs
- Consists of usually single, sometimes double layer thin circuit board base
 - FR-4 laminated on an aluminum sheet metal

PROPERTIES OF LAMINATES

- Electrical and mechanical properties affected by environmental factors:
 - Humidity
 - Temperature
 - Corrosive atmosphere

CORES

- Circuit board cores are pre-pressed layers
 - Copper foil –dielectric copper foil
- can vary from 0.005" to 0.060" thick
- The number of cores used will depend on the board's design

	Top Layer
0.005″	Prepreg
	Internal Ground Plane
0.005"	Core
	Internal Routing Layer
0.040"	Prepreg
	Internal Routing Layer
0.005″	Core
	Internal Power Plane
0.005"	Prepreg
	Bottom Layer

ANATOMY OF A SINGLE-LAYER PCB

ANATOMY OF A DOUBLE-SIDED PCB

ANATOMY OF MULTILAYER PCBS

Questions Thoughts Ideas

